Exam P Practice Problem 109 – counting insurance payments

Problem 109-A

Amounts of damages due to auto collision accidents follow a probability distribution whose density function is given by the following.

    \displaystyle  f(x) = \left\{ \begin{array}{ll}                   \displaystyle  \frac{3}{8000} \ (400-40x+x^2) &\ \ \ \ \ \ 0 < x < 20 \\           \text{ } & \text{ } \\          \displaystyle  0 &\ \ \ \ \ \ \text{otherwise} \\                              \end{array} \right.

When occurred, the collision damages are reimbursed by an insurance coverage subject to a deductible of 4.

Fifteen unrelated auto collision accidents have been reported. Determine the probability that exactly nine or ten of the accidents will be reimbursed by the insurance coverage.

      \displaystyle \bold ( \bold A \bold ) \ \ \ \ \ \ \ \ \ \ \ \  \bold 0 \bold . \bold 1 \bold 4 \bold 2

      \displaystyle \bold ( \bold B \bold ) \ \ \ \ \ \ \ \ \ \ \ \ \bold 0 \bold . \bold 1 \bold 6 \bold 3

      \displaystyle \bold ( \bold C \bold ) \ \ \ \ \ \ \ \ \ \ \ \ \bold 0 \bold . \bold 2 \bold 2 \bold 2

      \displaystyle \bold ( \bold D \bold ) \ \ \ \ \ \ \ \ \ \ \ \ \bold 0 \bold . \bold 2 \bold 6 \bold 6

      \displaystyle \bold ( \bold E \bold ) \ \ \ \ \ \ \ \ \ \ \ \ \bold 0 \bold . \bold 2 \bold 8 \bold 9

\text{ }

\text{ }

\text{ }

\text{ }

Problem 109-B

Amounts of damages due to auto collision accidents follow a probability distribution whose density function is given by the following.

    \displaystyle  f(x) = \left\{ \begin{array}{ll}                   \displaystyle  \frac{3}{4000} \ (400-80x+4 x^2) &\ \ \ \ \ \ 0 < x < 10 \\           \text{ } & \text{ } \\          \displaystyle  0 &\ \ \ \ \ \ \text{otherwise} \\                              \end{array} \right.

When occurred, the damages are reimbursed by an insurance coverage subject to a deductible of 2.

Twelve unrelated auto collision accidents have been reported. Determine the probability that exactly six or seven of the accidents will not be reimbursed by the insurance coverage.

      \displaystyle \bold ( \bold A \bold ) \ \ \ \ \ \ \ \ \ \ \ \  \bold 0 \bold . \bold 1 \bold 8 \bold 4

      \displaystyle \bold ( \bold B \bold ) \ \ \ \ \ \ \ \ \ \ \ \ \bold 0 \bold . \bold 2 \bold 2 \bold 5

      \displaystyle \bold ( \bold C \bold ) \ \ \ \ \ \ \ \ \ \ \ \ \bold 0 \bold . \bold 4 \bold 0 \bold 8

      \displaystyle \bold ( \bold D \bold ) \ \ \ \ \ \ \ \ \ \ \ \ \bold 0 \bold . \bold 4 \bold 2 \bold 7

      \displaystyle \bold ( \bold E \bold ) \ \ \ \ \ \ \ \ \ \ \ \ \bold 0 \bold . \bold 4 \bold 5 \bold 0

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

Answers

exam P practice problem

probability exam P

actuarial exam

actuarial practice problem

math

Daniel Ma

mathematics

dan ma actuarial science

daniel ma actuarial science

Daniel Ma actuarial

\copyright 2019 – Dan Ma

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: