Exam P Practice Problem 103 – randomly selected auto collision claims

Problem 103-A

The size of an auto collision claim follows a distribution that has density function f(x)=2(1-x) where 0<x<1.

Two randomly selected claims are examined. Compute the probability that one claim is at least twice as large as the other.

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \frac{10}{36}

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \frac{15}{36}

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \frac{20}{36}

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \frac{21}{36}

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \frac{23}{36}

\text{ }

\text{ }

\text{ }

Problem 103-B

Auto collision claims follow an exponential distribution with mean 2.

For two randomly selected auto collision claims, compute the probability that the larger claim is more than four times the size of the smaller claims.

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ 0.2

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ 0.3

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ 0.4

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ 0.5

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ 0.6

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

Answers can be found in this page.

probability exam P

actuarial exam

math

Daniel Ma

mathematics

dan ma actuarial science

Daniel Ma actuarial

\copyright 2018 – Dan Ma

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: