# Exam P Practice Problem 102 – estimating claim costs

Problem 102-A

Insurance claims modeled by a distribution with the following cumulative distribution function.

$\displaystyle F(x) = \left\{ \begin{array}{ll} \displaystyle 0 &\ \ \ \ \ \ x \le 0 \\ \text{ } & \text{ } \\ \displaystyle \frac{1}{1536} \ x^4 &\ \ \ \ \ \ 0 < x \le 4 \\ \text{ } & \text{ } \\ \displaystyle 1-\frac{2}{3} x+\frac{1}{8} x^2- \frac{1}{1536} \ x^4 &\ \ \ \ \ \ 4 < x \le 8 \\ \text{ } & \text{ } \\ \displaystyle 1 &\ \ \ \ \ \ x > 8 \\ \end{array} \right.$

The insurance company is performing a study on all claims that exceed 3. Determine the mean of all claims being studied.

$\text{ }$

$\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ 4.8$

$\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ 4.9$

$\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ 5.0$

$\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ 5.1$

$\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ 5.2$

$\text{ }$

$\text{ }$

$\text{ }$

Problem 102-B

Insurance claims modeled by a distribution with the following cumulative distribution function.

$\displaystyle F(x) = \left\{ \begin{array}{ll} \displaystyle 0 &\ \ \ \ \ \ x \le 0 \\ \text{ } & \text{ } \\ \displaystyle \frac{1}{50} \ x^2 &\ \ \ \ \ \ 0 < x \le 5 \\ \text{ } & \text{ } \\ \displaystyle -\frac{1}{50} x^2+\frac{2}{5} x- 1 &\ \ \ \ \ \ 5 < x \le 10 \\ \text{ } & \text{ } \\ \displaystyle 1 &\ \ \ \ \ \ x > 10 \\ \end{array} \right.$

The insurance company is performing a study on all claims that exceed 4. Determine the mean of all claims being studied.

$\text{ }$

$\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ 5.9$

$\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ 6.0$

$\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ 6.1$

$\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ 6.2$

$\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ 6.3$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

probability exam P

actuarial exam

math

Daniel Ma

mathematics

dan ma actuarial science

Daniel Ma actuarial

$\copyright$ 2018 – Dan Ma