# Exam P Practice Problem 77 – Estimating Random Claim Sizes

Problem 77-A

The probability distribution of the claim size from an auto insurance policy randomly selected from a large pool of policies is described by the following density function. $\displaystyle f(x)=\frac{3}{1000} \ (50-5x+\frac{1}{8} \ x^2), \ \ \ \ \ \ \ \ \ \ 0

What is the probability that a randomly selected claim from this insurance policy is within 120% of the mean claim size? $\text{ }$ $\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.50$ $\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.85$ $\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.88$ $\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.91$ $\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.95$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$

______________________________________________________________________

Problem 77-B

The probability distribution of the claim size from an auto insurance policy randomly selected from a large pool of policies is described by the following density function. $\displaystyle f(x)=\frac{3}{2500} \ (100x-20x^2+ x^3), \ \ \ \ \ \ \ \ \ \ 0

What is the probability that a randomly selected claim from this insurance policy is within one-half of a standard deviation of the mean claim size? $\text{ }$ $\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.34$ $\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.37$ $\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.60$ $\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.62$ $\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.64$

______________________________________________________________________ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$

______________________________________________________________________

______________________________________________________________________ $\copyright \ 2013 \ \ \text{Dan Ma}$